Selection Pressure and an Efficiency of Neural Network Architecture Evolving

نویسندگان

  • Halina Kwasnicka
  • Mariusz Paradowski
چکیده

The success of artificial neural network evolution is determined by many factors. One of these factors is the fitness function used in genetic algorithm. Fitness function determines selection pressure and Therefore influences the direction of evolution. It decides, whether received artificial neural network will be able to fulfill its tasks. Three fitness functions are proposed and examined in the paper, every one of them gives different selection pressure. Comparison and discussion of evolution results for every function is made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method

In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Predicting the coefficients of the Daubert and Danner correlation using a neural network model

In the present research, three different architectures were investigated to predict the coefficients of the Daubert and Danner equation for calculation of saturated liquid density. The first architecture with 4 network input parameters including critical temperature, critical pressure, critical volume and molecular weight, the second architecture with 6 network input parameters including the on...

متن کامل

Suppliers Selection in Consideration of Risks by a Neural Network

Faced with the dynamic demands of a changing market, companies are facing fierce competition, which forces them to consider more and more new approaches to improve quality, reduce costs, produce on time, control their risks and remain successful in the face of any disruption. It is clear that the choice of appropriate suppliers is one of the key factors in increasing the competitiveness of comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004